In vivo testing of crosslinked polyethers. I. Tissue reactions and biodegradation.

نویسندگان

  • B J Pol
  • P B van Wachem
  • M J van Luyn
  • L van der Does
  • A Bantjes
چکیده

The in vivo biocompatibility and biodegradation of cross-linked (co)polyethers with and without tertiary hydrogen atoms in the main chain and differing in hydrophilicity were studied by means of subcutaneous implantation in rats. After 4 days, 1 month, and 3 months postimplantation, the tissue reactions and interactions were evaluated by light microscopy (LM) and transmission electron microscopy (TEM). Poly(tetrahydrofuran) (poly(THF)), poly(propylene oxide) (poly(POx)), and poly(tetrahydrofuran-co-oxetane) (poly-(THF-co-OX)) were tested as relatively hydrophobic polyethers, and poly(ethylene oxide) (PEO) and a poly(THF)/ PEO blend were used as more hydrophilic materials. In general, all polyethers showed good biocompatibility with respect to tissue reactions and interactions, with low neutrophil and macrophage infiltration, a quiet giant cell reaction, and formation of a thin fibrous capsule. For the relatively hydrophobic polyethers studied, the biostability increased in the order poly(POx) < poly(THF-co-OX) < poly(THF), probably indicating that the absence of tertiary hydrogen atoms has a positive effect on the biostability. Concerning the more hydrophilic materials, crosslinked PEO showed the highest rate of degradation, probably due to the mechanical weakness of the hydrogel in combination with the highest presence of giant cells as a result of the high porosity. A frayed surface morphology was observed after implantation of the crosslinked poly(THF)/PEO blend, which might be due to preferential degradation of PEO domains.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vivo testing of crosslinked polyethers. II. Weight loss, IR analysis, and swelling behavior after implantation.

As reported in Part I ("In vivo testing of crosslinked polyethers. I. Tissue reactions and biodegradation," J. Biomed. Mater. Res., this issue, pp. 307-320), microscopical evaluation after implantation of crosslinked (co)polyethers in rats showed differences in the rate of biodegradation, depending on the presence of tertiary hydrogen atoms in the main chain and the hydrophilicity of the polyet...

متن کامل

Genipin cross-linked electrospun chitosan-based nanofibrous mat as tissue engineering scaffold

Objective(s): To improve water stability of electrospun chitosan/ Polyethylene oxide (PEO) nanofibers, genipin, a biocompatible and nontoxic agent, was used to crosslink chitosan based nanofibers.  Materials and Methods: Different amounts of genipin were added to the chitosan/PEO solutions, chitosan/PEO weight ratio 90/10 in 80 % acetic acid, and the solutions were then electrospun to form nano...

متن کامل

Modification and optimization of electrospun gelatin sheets by electron beam irradiation for soft tissue engineering

BACKGROUND Crosslinked gelatin nanofibers are one of the widely used scaffolds for soft tissue engineering. However, modifying the biodegradation rate of chemically crosslinked gelatin is necessary to facilitate cell migration and tissue regeneration. Here, we investigated the optimal electron beam (e-beam) irradiation doses with biodegradation behavior on changes in the molecular weight, morph...

متن کامل

Fabrication of Porous Hydroxyapatite-Gelatin Scaffolds Crosslinked by Glutaraldehyde for Bone Tissue Engineering

In this study, to mimic the mineral and organic components of natural bone, hydroxyapatite[HA] and gelatin[GEL] composite scaffolds were prepared using the solvent-casting method combined with a freeze drying process. Glutaraldehyde[GA] was used as a cross linking agent and sodium bisulfite was used as an excess GA discharger. Using this technique, it is possible to produce scaffolds with mecha...

متن کامل

Comparative studies on crosslinked and uncrosslinked natural rubber biodegradation by Pseudomonas sp.

A comparative study on biodegradation of di-cumyl peroxide (DCP) crosslinked and uncrosslinked natural rubber by Pseudomonas sp. was carried out. Decrease in organic carbon content along with the changes in tensile strength of the treated rubber, both DCP crosslinked and uncrosslinked natural rubber, indicated rubber hydrocarbon utilization by the Pseudomonas sp. A decrease in 60.88% MPa and 41...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomedical materials research

دوره 32 3  شماره 

صفحات  -

تاریخ انتشار 1996